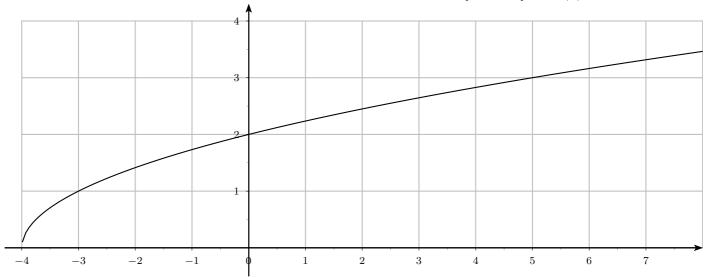
On a tracé ci-dessous la courbe représentative de la fonction définie sur $[-4; +\infty[$ par $f(x) = \sqrt{x+4}$.

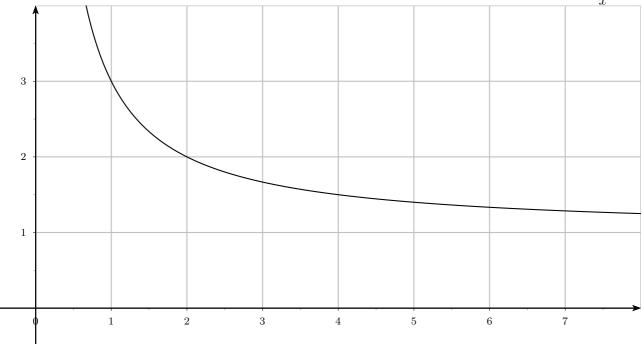


On définit la suite (u_n) par : $\forall n \in \mathbb{N}, u_n = f(n)$

- 1. Placer sur l'axe des ordonnées, les trois premiers termes de la suite (u_n) .
- 2. Calculer les trois premiers termes de la suite (u_n) .
- 3. Conjecturer la limite de la suite (u_n) .

Exercice 2

On a tracé ci-dessous la courbe représentative de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{2}{x} + 1.$



On définit la suite (u_n) par : $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$

- 1. Placer sur l'axe des abscisses les quatre premiers termes de la suite (u_n) .
- 2. Calculer les quatre premiers termes de la suite (u_n) .
- 3. La suite (u_n) est-elle monotone? Le démontrer.
- 4. La suite (u_n) est-elle arithmétique?
- 5. La suite (u_n) est-elle géométrique?
- 6. Pour tout entier naturel n non nul, exprimer u_n en fonction de u_{n-1}

Aurélien décide de partir de Paris et d'aller à Stockholm en vélo. Il doit parcourir 2000km.

Le premier jour il parcourt 20 km. Chaque jour, il parcourt 5 km de plus que le jour précédent. On note u_n la distance parcourue le n-ième jour. Ainsi $u_1 = 20$

- 1. Quelle distance parcourt-il le deuxième jour?
- 2. Exprimer u_{n+1} en fonction de u_n . Quelle est la nature de la suite u_n ?
- 3. En déduire l'expression de u_n en fonction de n.
- 4. Quelle distance parcourt-il le dixième jour?
- 5. On note s_n la distance parcourue **au total** depuis le début du parcours, le n-ième jour au soir.
 - (a) Compléter sur l'énoncé les lignes de cette fonction somme, ci-dessous, écrite en Python, pour qu'elle renvoie la distance totale parcourue depuis le début du parcours jusqu'au soir du n—ième jour.

```
1 def somme(n):
2 u=20
3 S=......
4 for k in range (......):
5 u=u+5
6 S=......
7 return S
```

- (b) Que renvoie cette fonction pour n = 5.
- (c) Exprimer s_n en fonction de n.
- 6. Déterminer au bout de combien de jours Aurélien aura parcouru les 2 000 km et sera arrivé à Stockholm en expliquant votre démarche qui peut impliquer par exemple l'utilisation de la calculatrice ou la résolution d'une équation.

Exercice 4

Une retenue d'eau artificielle est alimentée par un ruisseau dont le débit diminue de 20% d'un jour à l'autre à cause d'une période sécheresse. Pour la journée du 1er juin, le débit d_1 est égal à 300 m³ par jour. On note d_n le débit pour le n-ième jour du mois de juin.

- 1. Calculer le débit d_2 pour le 2 juin.
- 2. Exprimer d_{n+1} en fonction de d_n . En déduire la nature de la suite (d_n) puis l'expression de d_n en fonction de n.
- 3. Calculer le débit pour le dixième jour.
- 4. Calculer le volume total apporté dans la retenue au cours des 30 jours du mois de juin.

Exercice 5

On considère la suite (u_n) définie par $u_0 = 10$ et, pour tout entier naturel n, $u_{n+1} = \frac{1}{2}u_n + 7$

- 1. (a) Calculer u_1 et u_2 . Donner les trois termes suivants à l'aide la calculatrice.
 - (b) La suite (u_n) est-elle arithmétique?
- 2. Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 14$.
 - (a) Montrer que la suite (v_n) est géométrique. On précisera sa raison et son premier terme.

2

- (b) Exprimer v_n et u_n en fonction de n.
- 3. On considère $S_n = \sum_{k=0}^n v_k$ et $T_n = \sum_{k=0}^n u_k$.

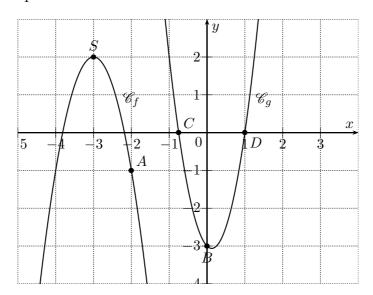
Donner les expressions de S_n et T_n en fonction de n.

Une entreprise achète des fruits très mûrs, pommes ou bananes à bas coût. Parmi ses achats, 30% des fruits sont des pommes qui, selon leur état sont utilisées pour fabriquer des compotes pour les quatre cinquièmes, ou, pour les autres, sont jetés. De même 60% des bananes achetées sont utilisées pour fabriquer des compotes et les autres sont jetées.

- 1. On choisit au hasard un fruit acheté par cette entreprise et on note respectivement B et J les événements « Ce fruit est une banane » et « ce fruit va être jeté ».
 - (a) Préciser les probabilités P(B), $P_B(J)$ et $P_{\overline{B}}(J)$, puis tracer un arbre modélisant la situation.
 - (b) Quelle est la probabilité que le fruit choisi soit une banane destinée à être jetée? Montrer que P(J) = 0,34.
 - (c) Si le fruit choisi est destiné à être jeté, quelle est la probabilité que ce fruit soit une pomme?
- 2. Cette entreprise achète les pommes et les bananes au prix de $0,25 \in le kg$. Les fruits sont ensuite triés et regroupés en cagettes de 4 kg, suivant qu'ils sont destinés à être jetés ou non. Les compotes fabriquées sont revendues au prix de $1,75 \in le kg$, indépendamment de leur composition. Après le tri des fruits, on choisit une cagette au hasard et on note X le bénéfice algébrique à venir de l'entreprise pour cette cagette. Par exemple, si cette cagette est composée de fruits destinés à être jetés, X est négatif et correspond au coût d'achat de 4 kg de fruits pour l'entreprise.
 - (a) Déterminer la loi de X.
 - (b) Calculer l'espérance de X, puis interpréter le résultats dans le contexte de l'exercice.

Exercice 7

Les paraboles \mathscr{C}_f et \mathscr{C}_g tracées ci-dessous représentent deux fonctions polynômes de degré 2. La parabole \mathscr{C}_f passe par le point A de coordonnées (-2;-1) et a pour sommet le point S de coordonnées (-3;2). La parabole \mathscr{C}_g passe par le point S de coordonnées S0 et coupe l'axe des abscisses en S0 et S1 de coordonnées respectives S2 et S3 et S4 et S5 et S6 et S7 et S8 et S9 et



Exercice 8

On considère la fonction polynôme définie sur \mathbb{R} par $P(x) = 2x^3 - 3x^2 - 62x - 105$

- 1. Calculer P(-3).
- 2. Déterminer les réels a, b et c tels que $P(x) = (x-3)(ax^2 + bx + c)$
- 3. Résoudre dans \mathbb{R} l'équation P(x) = 0
- 4. Résoudre dans \mathbb{R} l'inéquation P(x) > 0

Soit f la fonction définie sur [-5; 5] par $f(x) = -3x^3 + 7x^2 + 22x - 8$.

Étudier les variations de f. On dressera le tableau de variation de f. On nomme \mathscr{C}_f la courbe représentative de f dans le repère $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$, tracer \mathscr{C}_f

Soit f la fonction définie par $f(x) = \frac{6x^2 - 14x + 5}{2x - 4}$. On appelle (\mathscr{C}_f) la représentation graphique de f dans le plan muni d'un repère orthonormal $O(x; \overrightarrow{i}, \overrightarrow{j})$.

- 1. Étudier les variations de f sur son ensemble de définition \mathcal{D}_f . (On résumera les résultats à l'aide d'un tableau de variations)
- 2. (a) Montrer que pour tout réel x de \mathcal{D}_f , $f(x) = 3x 1 + \frac{1}{2x 4}$
 - (b) Soit (Δ) la droite d'équation y = 3x 1. Étudier la position relative de (\mathscr{C}_f) et (Δ).

Exercice 11

Soit f la fonction définie sur]-4; $+\infty[$ par $f(x)=\frac{x^3-2}{x+4}.$

- 1. Montrer que pour tout x > -4, la dérivée de f vérifie $f'(x) = \frac{2x^3 + 12x^2 + 2}{(x+4)^2}$.
- 2. Pour tout x > -4, on pose $g(x) = 2x^3 + 12x^2 + 2$. Monter que la fonction q admet un minimum sur $]-4;+\infty[$.
- 3. Montrer que f est monotone sur $]-4;+\infty[$.

Exercice 12

Une grande entreprise commercialise fabrique et vend des tablettes tactiles.

Cette entreprise fabrique entre 300 et 800 tablettes par jour et le coût total de fabrication de x centaines de tablettes est modélisé, en milliers d'euros, par la fonction C définie sur [3;8] par $C(x)=0,4x^3-9x+100$ et le coût moyen est égal à $C_M(x) = \frac{C(x)}{100x}$ pour tout x dans [3;8]. Les tablettes sont ensuite vendues 350 euros l'unité.

- 1. Monter que pour tout x dans [3;8], la dérivée de \mathcal{C}_M vérifie : $\mathcal{C}_M'(x) = \frac{(x-5)(0,8x^2+4x+20)}{100x^2}$.
- 2. (a) En déduire que le coût moyen de fabrication est minimal pour une certaine quantité q de tablettes fabriquées et préciser la valeur de q.
 - (b) Calculer le bénéfice en euro de l'entreprise pour q tablettes produites et vendues au cours d'une journée.

Exercice 13

On décide d'éteindre le chauffage dans le chambres d'une maison à 21 h. La température y est alors de 20°C. On suppose que la température extérieure reste constante et égale à 9°C.

On désigne par t le temps écoulé depuis 21 h, exprimé en heure, et on modélise la température à l'instant t, dans une chambre, exprimée en °C, par une fonction $t \mapsto f(t)$, définie sur l'intervalle [0; 10].

- 1. Quel sens de variation peut-on conjecturer pour la fonction f sur l'intervalle [0;10]? On admet que la fonction f est définie sur [0; 10] par $f(t) = 11e^{-0.06t} + 9$
- 2. Démonter le sens de variation conjecturé dans la question 1.
- 3. Calculer f(10). Arrondir au dixième et interpréter ce résultat dans le contexte de l'énoncé.
- 4. Pour un sommeil « réparateur », la température idéale dans une chambre se situe entre 16°C et 19°C. En raisonnant en heure entière et en utilisant la calculatrice, indiquer un intervalle de temps d'amplitude maximale pour lequel le sommeil sera « réparateur » .

4

Partie A. Étude graphique

On donne ci-dessous la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur l'intervalle [-3;2]. On note f' la fonction dérivée de la fonction f.

Le point A de coordonnées (0;3) appartient à la courbe \mathscr{C}_f . B est le point d'abscisse 1 appartenant à la courbe \mathscr{C}_f .

On dispose des informations suivantes :

- La fonction f est strictement décroissante sur [-3; -0, 5] et [1; 2] et elle est strictement croissante sur [-0,5;1];
- La droite Δ d'équation y = 0, 5x + 3 est tangente à la courbe \mathscr{C}_f au point A;
- la tangente Δ' à la courbe \mathscr{C}_f au point B est parallèle à l'axe des abscisses.

Chaque réponse devra être justifiée.

- 1. Donner la valeur de f'(1). 2. Quel est le signe de f'(-2)?
- 3. Donner la valeur de f'(0).

Partie B. Étude théorique

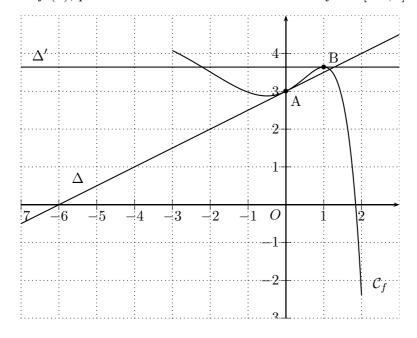
On admet qu'il existe trois réels a, b et c pour lesquels la fonction f représentée dans la partie A est définie, pour tout réel x de [-3; 2], par : $f(x) = (ax^2 + bx + c)e^x + 5$.

- 1. En utilisant l'un des points du graphique, justifier que c=-2.
- 2. On admet que la fonction dérivée f' est donnée, pour tout réel x de [-3;2], par

$$f'(x) = (ax^{2} + (2a + b)x - 2 + b)e^{x}$$

En utilisant les résultats de la partie A, justifier que b = 2, 5, puis que a = -1.

- 3. Vérifier que pour tout réel x de l'intervalle $[-3;2]:f'(x)=(-x^2+0,5x+0,5)e^x$.
- 4. Étudier le signe de f'(x), puis dresser le tableau de variation de f sur [-3;2].



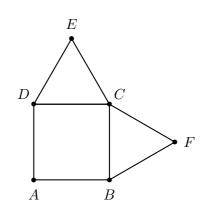
Exercice 15

Soit ABCD un parallélogramme tel que $AB=8,\,AD=6$ et AC=12.Déterminer une valeur approchée en degrés, à 10^{-2} près, de la mesure de l'angle BAD

Exercice 16

On considère un carré ABCD de côté 1 ainsi que deux points E et F tels que les triangles BCF et DCE sont équilatéraux comme sur la figure ci-contre.

Démontrer que les droites (AE) et (DF) sont perpendiculaires.



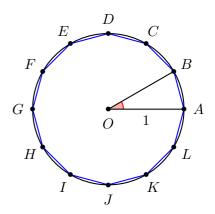
Soit ABCDEFGHIJKL un dodécagone régulier (c'est à dire un polygone convexe à 12 côtés de même longueur) inscrit dans le cercle de centre O et de rayon 1.

Calculer la valeur exacte du périmètre et de l'aire du dodécagone.

Exercice 18

Sur un terrain de paintball, trois poteaux A, B et C et une cible T forment les sommets d'un rectangle. Un joueur J dans ce rectangle connaît la distance en mètre qui le sépare de chaque poteau : $\rm JA=336m$, $\rm JB=144m$ et $\rm JC=284m$.

Calculer la distance JT qui sépare le joueur J de sa cible.



Exercice 19

Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère le point A(-4; 4) et la droite (d) dont une équation cartésienne est -2x + y + 1 = 0.

Calculer les coordonnées du projeté orthogonal H du point A sur la droite (d)

Exercice 20

Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère le cercle \mathscr{C} dont une équation cartésienne est

$$x^2 + y^2 - 4x + 2y - 4 = 0$$

1. Démontrer que le point A(3,8;1,4) appartient au cercle \mathscr{C} .

2. Déterminer les coordonnées du centre I du cercle $\mathscr C$ ainsi que son rayon.

3. Déterminer une équation de la tangente (T) à $\mathscr C$ au point A.

Exercice 21

Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, démontrer que les points A, B, C, D de coordonnées respectives (7,5;4,5), (3;6), (-1,5;4,5) et (-3;3) appartiennent à un même cercle.